THE ESTIMATION OF SNP EFFECTS ON A BINARY AND A QUANTITATIVE TRAIT

Kacper Żukowski, Joanna Szyda

The aim of the work

- comparison effects of Single Nucleotide Polymorphisms (SNP) on a binary and a quantitative trait
- choose most significant SNPs

Material - MAF

MAF

SNP selection

9767 SNPs in training

gBLUP

$$y = \mu + Za + e$$

- y EBVs vector estimated by standard animal model
- \square μ overall mean

a random SNP effects assuming

$$a \sim N\left(0, I\frac{\boldsymbol{\sigma}_{\alpha}^2}{n}\right)$$

- Z design matrix for random SNPs effects the elements given by -1, 0 and 1 for SNP genotype 11, 12(21) and 22
- e random errors assuming
- **n** number of SNPs $e \sim N(0, I\sigma_e^2)$

gBLUP

All animals (2326)
binary trait as classifier:
affected animals (687)
unaffected animals (1639)

$$\begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} X'R^{-1}y \\ Z'R^{-1}y \end{bmatrix}$$
$$G = I\frac{\hat{\sigma}_{\alpha}^{2}}{n}$$
$$R = I\sigma_{e}^{2}$$

Modification of gBLUP (CgBLUP)

$$y = \mu + Z_{unaff} a_{unaff} + Z_{aff} a_{aff} + e$$

- a random SNP effects assuming for unaffected animals
- a random SNP effects assuming for affected animals

$$a_{unaff} \sim N\left(0, I\frac{\sigma_{\alpha}^{2}}{n}\right)$$
$$a_{aff} \sim N\left(0, I\frac{\sigma_{\alpha}^{2}}{n}\right)$$

*Z*_{unaff} and *Z*_{aff}
 *d*esign matrix for random SNPs effects
 *ô*²_α
 additive variance for quantitative trait

Modification of gBLUP

Logistic regression model

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 Z_i$$

- y a probability of being affected,
- \square β_0 intercept
- Z_i ith column for SNP in incidence matrix Z_i

Significance testing

- □ for gBLUP and CgBLUP models
 - p-value was calculated from normal distribution
- □ for Logistic regression model
 - Likelihood ratio test is given by:

$$LRT = 2(\ln L_1 - \ln L_2)$$

p-value was calculated from chi-squared distribution

Significant SNPs

for <i>α=0.05</i>	$H_0: \boldsymbol{\beta} = 0$	$H_1: \boldsymbol{\beta} \neq 0$
-------------------	-------------------------------	----------------------------------

Chromosome	gBLUP		CgBLUP		Logistic	
	all	affected	unaffected	affected	unaffected	regressio n model*
1	275	296	162	169	192	657
2	177	170	167	184	172	533
3	195	235	181	222	219	557
4	126	119	156	222	207	528
5	89	80	181	167	159	553

*after Bonferroni correction

Correlation between SNPs effects

gBLUP all	gBLUP affected	gBLUP unaffected	CgBLUP affected	CgBLUP unaffected	Logistic regression model	
1,00	0,80	0,95	-0,02	0,07	0,31	gBLUP all
	1,00	0,66	-0,01	0,08	0,30	gBLUP affected
		1,00	-0,02	0,06	0,30	gBLUP unaffected
			1,00	0,83	0,01	CgBLUP affected
	R			1,00	0,03	CgBLUP unaffected
S.					1,00	Logistic regression model

Results, gBLUP

Results, gBLUP

Results, CgBLUP

Results, CgBLUP

Results, LOGIT

Results, LOGIT

Results, LOGIT

Conclusions

- Gene located on 22,0-22,5 Mb on chromosome 3 could have influence on a quantitative and a binary trait simultaneously
- High correlation within gBLUP and CgBLUP models in contrast to between models

Thank you for attention